z-logo
open-access-imgOpen Access
Realistic microscopic level densities for spherical nuclei
Author(s) -
Nicolas J. Cerf
Publication year - 1994
Publication title -
physical review c
Language(s) - English
Resource type - Journals
eISSN - 1089-490X
pISSN - 0556-2813
DOI - 10.1103/physrevc.50.836
Subject(s) - physics , monte carlo method , range (aeronautics) , neutron , nucleus , statistical physics , shell model , nuclear physics , computational physics , atomic physics , materials science , mathematics , statistics , composite material , biology , microbiology and biotechnology
Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.info:eu-repo/semantics/publishe

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom