z-logo
open-access-imgOpen Access
Transport of a sliding Wigner crystal in the four flux composite fermion regime
Author(s) -
Chi Zhang,
Rui-Rui Du,
Michael J. Manfra,
L. N. Pfeiffer,
K. W. West
Publication year - 2015
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.92.075434
Subject(s) - wigner crystal , composite fermion , condensed matter physics , physics , phase diagram , phase (matter) , magnetic field , quantum hall effect , fractional quantum hall effect , fermion , magnetic flux quantum , crystal (programming language) , quantum phase transition , electron , magnetic flux , phase transition , quantum mechanics , quantum spin hall effect , computer science , programming language
In two-dimensional (2D) electron systems, Wigner crystals (WC) and fractional quantum Hall effect (FQHE) liquids are competing ground states under low temperatures (T) and high magnetic fields (B). Here we report differential conductivity results demonstrating the reentrant insulating phase around ν=1/5 in a 2D hole system in AlGaAs/GaAs quantum wells and unexpected features in the solid-liquid phase transition between WC and FQHE liquids in ultrahigh magnetic fields up to 45 T. Remarkably, the electric field (E) plays an equivalent role as the temperature does in our phase diagram. From the E−T “duality” analysis, a characteristic length of 450 nm is derived, which can be understood as the phase-coherent domain size of WC. Moreover, evidence shows that with weak disorder the insulating phase and composite fermion liquid could be coexisting around ν= 1/5, pointing to the possibility that the insulating phase is the four flux quantum Wigner crystal, as proposed by theories

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom