z-logo
open-access-imgOpen Access
Origin of the charge density wave in 1T-TiSe2
Author(s) -
Zhiyong Zhu,
Yingchun Cheng,
Udo Schwingenschlögl
Publication year - 2012
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.85.245133
Subject(s) - delocalized electron , charge density wave , charge (physics) , electron , condensed matter physics , physics , wave function , instability , symmetry (geometry) , phase transition , ab initio , materials science , quantum mechanics , mathematics , superconductivity , geometry
All-electron ab initio calculations are used to study the microscopic origin of the charge density wave (CDW) in 1T-TiSe2. A purely electronic picture is ruled out as a possible scenario, indicating that the CDW transition in the present system is merely a structural phase transition. The CDW instability is the result of a symmetry lowering by electron correlations occurring with electron localization. Suppression of the CDW in pressurized and in Cu-intercalated 1T-TiSe2 is explained by a delocalization of the electrons, which weakens the correlations and counteracts the symmetry lowering

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom