z-logo
open-access-imgOpen Access
Spectroscopic investigations of Eu3+:Y2SiO5for quantum …
Author(s) -
Björn Lauritzen,
Nuala Timoney,
Nicolas Gisin,
Mikael Afzelius,
Hugues de Riedmatten,
Yazhou Sun,
R. M. Macfarlane,
R. L. Cone
Publication year - 2012
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.85.115111
Subject(s) - hyperfine structure , excited state , ground state , physics , atomic physics , materials science
Rare-earth-ion-doped solids are promising materials as light-matter interfaces for quantum applications. Europium doped into an yttrium orthosilicate crystal in particular has interesting coherence properties and a suitable ground-state energy-level structure for a quantum memory for light. In this paper we report on spectroscopic investigations of this material from the perspective of implementing an atomic frequency comb (AFC)-type quantum memory with spin-wave storage. For this goal we determine the order of the hyperfine levels in the 7 F0 ground state and 5 D0 excited state, and we measure the relative strengths of the optical transitions between these levels. We also apply spectral hole burning techniques in order to prepare the system as a well-defined Λ system, as required for further quantum memory experiments. Furthermore, we measure the optical Rabi frequency on one of the strongest hyperfine transitions, a crucial experimental parameter for the AFC protocol. From this we also obtain a value for the transition dipole moment which is consistent with that obtained from absorption measurements

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom