z-logo
open-access-imgOpen Access
Guiding the experimental discovery of magnesium alloys
Author(s) -
Richard H. Taylor,
Stefano Curtarolo,
Gus L. W. Hart
Publication year - 2011
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.84.084101
Subject(s) - star (game theory) , ab initio , star polymer , maxima and minima , materials science , physics , density functional theory , crystallography , astrophysics , chemistry , quantum mechanics , polymer , nuclear magnetic resonance , mathematical analysis , mathematics , polymerization
Magnesium alloys are among the lightest structural materials known and are of considerable technological interest. To develop superior magnesium alloys, experimentalists must have a thorough understanding of the concentration-dependent precipitates that form in a given system, and hence, the thermodynamic stability of crystal phases must be determined. This information is often lacking but can be supplied by first-principles methods. Within the high-throughput framework, AFLOW,T = 0 K ground-state predictions are made by scanning a large set of known candidate structures for thermodynamic (formation energy) minima. The following 34 systems are investigated: AlMg, AuMg, CaMg, CdMg, CuMg, FeMg , GeMg, HgMg, IrMg, KMg , LaMg, MgMo , MgNa, MgNb , MgOs , MgPb, MgPd, MgPt, MgRb , MgRe , MgRh, MgRu, MgSc, MgSi, MgSn, MgSr, MgTa , MgTc, MgTi , MgV , MgW , MgY, MgZn, and MgZr ( = systems in which the ab initio method predicts that no compounds are stable). Avenues for further investigation are clearly revealed by this work. These include stable phases predicted in compound-forming systems as well as phases predicted in systems reported to be non-compound-forming.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom