z-logo
open-access-imgOpen Access
Energetics and electronic structure of encapsulated single-stranded DNA in carbon nanotubes
Author(s) -
Katsumasa Kamiya,
Susumu Okada
Publication year - 2011
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.83.155444
Subject(s) - carbon nanotube , materials science , electronic structure , molecule , density functional theory , exothermic reaction , nanotechnology , chemical physics , nanotube , dna , moiety , energetics , computational chemistry , chemistry , stereochemistry , organic chemistry , ecology , biology , biochemistry
We report total-energy electronic-structure calculations based on density functional theory performed on single-stranded DNA (ssDNA) encapsulated in single-walled carbon nanotubes (SWCNTs). We find that the encapsulation reaction is exothermic for nanotubes with diameters greater than 1.33 nm. The energy gain is calculated to be in the range of 0.8–1.5 eV/nm, depending on tube diameter, base sequences, and ssDNA structure. In optimal ssDNA-SWCNT hybrid-system geometries, the polar groups of ssDNA, i.e. the POH moiety in its backbone, are located adjacent to the wall of the nanotube. The electronic structure of the hybrid system is qualitatively similar to a simple sum of those of an isolated ssDNA molecule and an empty SWCNT. However, detailed analysis of the electronic structure of the hybrid system reveals that the encapsulation of ssDNA into a SWCNT affects the electronic structures of both the ssDNA and the SWCNT

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom