Nanometer-resolution measurement and modeling of lateral variations of the effective work function at the bilayerPt / Al / SiO 2 interface
Author(s) -
Wei Cai,
Kibog Park,
J. P. Pelz
Publication year - 2009
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.80.165322
Subject(s) - bilayer , physics , energy (signal processing) , work function , materials science , condensed matter physics , resolution (logic) , nanotechnology , layer (electronics) , quantum mechanics , chemistry , computer science , biochemistry , artificial intelligence , membrane
A ballistic electron emission microscopy (BEEM) comparison of the dependence on gate voltage of the average energy barrier of a metal bilayer Pt/Al/ SiO2 /Si sample and a Pt/ SiO2 /Si sample suggests that the metal/oxide interface of the Pt/Al/ SiO2 /Si sample is laterally inhomogeneous at nm length scales. However, BEEM images of the bilayer sample do not show significantly larger lateral variations than observed on a (uniform) Pt/ SiO2 /Si sample, indicating that any inhomogeneous "patches" of lower-energy barrier height have size smaller than the lateral resolution of BEEM, estimated for these samples to be ∼10nm. Finite element electrostatic simulations of an assumed inhomogeneous interface with nm size patches of different effective work function can fit the experimental data of the bilayer sample much better than an assumed homogenous interface, indicating that the bilayer film is laterally inhomogeneous at the nm scale.open2
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom