z-logo
open-access-imgOpen Access
Temperature-driven refacetting phase transition in Pb chains on Si(557)
Author(s) -
M. Czubanowski,
Andreas Schuster,
H. Pfnür,
Christoph Tegenkamp
Publication year - 2008
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.77.174108
Subject(s) - monolayer , phase transition , conductance , condensed matter physics , electron diffraction , materials science , annealing (glass) , diffraction , fermi surface , transition temperature , physics , nanotechnology , optics , superconductivity , composite material
By using quantitative low energy electron diffraction, we have studied the temperature-driven phase transition of Pb chains grown on Si(557) substrates at a surface concentration of 1.3 ML. This concentration, which is still below one physical monolayer, exhibits a unique switching of electrical conductance from one dimensional to two dimensional above 78 K, which is coupled to this phase transition, and was investigated for this reason. Annealing to 640 K causes a concentration-driven refacetting of the whole surface into large (223) facets at low temperatures, while along the chains a so-called (1,5) linear phase is formed, causing a tenfold periodicity. At Tc=78 K, we analyze a temperature-driven order-order transition along the [¯1¯12] direction in detail, which again turns out to be a refacetting transition. The two-dimensional character of this transition was seen by corresponding structural changes along the [1¯10] direction as well. Refacetting causes a change in periodicity and destroys the conditions of Fermi nesting necessary for one-dimensional conductance. © 2008 The American Physical Society

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom