z-logo
open-access-imgOpen Access
Light intensity, temperature, and thickness dependence of the open-circuit voltage in solid-state dye-sensitized solar cells
Author(s) -
Henry J. Snaith,
Lukas SchmidtMende,
Michaël Grätzel,
Marco Chiesa
Publication year - 2006
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.74.045306
Subject(s) - open circuit voltage , materials science , diffusion , intensity (physics) , light intensity , voltage , electrode , charge carrier , charge (physics) , solar cell , electric field , molecular physics , optoelectronics , atomic physics , analytical chemistry (journal) , optics , physics , chemistry , thermodynamics , chromatography , quantum mechanics
We present an analytical and experimental investigation into the origin of the open-circuit voltage in the solid-state dye-sensitized solar cell. Through Kelvin probe microscopy, we demonstrate that a macroscopically uniform electric field exists throughout the nanocomposite between the electrodes. Considering a balance between drift and diffusion currents, and between charge generation and recombination, we develop an analytical expression for the open-circuit voltage which accurately follows experimental data. We find the open-circuit voltage increases with light intensity as 1.7 kTq, where T is absolute temperature, however it decreases with increasing temperature and device thickness. The intensity dependence arises from the charge generation rate increasing more strongly with intensity than the recombination rate constant, resulting in increased chemical potential within the device. We find that the temperature dependence arises from a reduction in the charge lifetime and not from increased charge diffusion and mobility. The thickness dependence is found to derive from two factors; first, charge recombination sites are distributed throughout the film, enabling more charges to recombine in thicker films before influencing the potential at the electrodes, and second, the average optical power density within the film reduces with increasing film thickness. © 2006 The American Physical Society

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom