Atomic structure of the cleavedSi ( 111 ) − ( 2 × 1 ) surface refined by dynamical LEED
Author(s) -
Xu Geng,
Bingcheng Deng,
Zhaoxian Yu,
S. Y. Tong,
M.A. Van Hove,
F. Jona,
I. Zasada
Publication year - 2004
Publication title -
physical review b
Language(s) - English
Resource type - Journals
eISSN - 1538-4489
pISSN - 1098-0121
DOI - 10.1103/physrevb.70.045307
Subject(s) - intensity (physics) , physics , chain (unit) , crystallography , low energy electron diffraction , diffraction , materials science , atomic physics , electron diffraction , optics , quantum mechanics , chemistry
New or modified models have been proposed for the much-studied Si(111)-(2x1) surface structure, including: a reverse-tilted p-bonded chain model (by Zitzlsperger et al); a three-bond scission model (by Haneman et al); and a p-bonded chain model with enhanced vibrations (present work). These models are compared here to the generally accepted modified p-bonded chain model (by Himpsel et al, 1984), by analyzing low-energy electron diffraction (LEED) I-V curves measured earlier. Using the efficient automated tensor LEED technique, the models can be refined to a much greater degree than with earlier methods of LEED analysis. This study distinctly favors the earlier modified p-bonded chain model, but with strongly enhanced vibrations. To compare models that have different numbers of adjustable free parameters a Hamilton ratio test is used: it can distinguish between improvement due to a better model and improvement due only to more parameters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom