Many-body effects in a laterally inhomogeneous semiconductor quantum well
Author(s) -
CunZheng Ning,
Jianzhong Li
Publication year - 2002
Publication title -
physical review. b, condensed matter
Language(s) - English
Resource type - Journals
eISSN - 1095-3795
pISSN - 0163-1829
DOI - 10.1103/physrevb.65.201305
Subject(s) - ambipolar diffusion , condensed matter physics , scattering , diffusion , electron , physics , semiconductor , renormalization , electron scattering , carrier scattering , intrinsic semiconductor , materials science , quantum mechanics , doping
Many-body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHF) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHF part and the scattering part. We show that, in the limit of the ambipolar diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHF terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density- and temperature-dependent energy landscape created by the band-gap renormalization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom