z-logo
open-access-imgOpen Access
Dielectrically enhanced excitons in semiconductor-insulator quantum wires: Theory and experiment
Author(s) -
E. A. Muljarov,
E. A. Zhukov,
В. С. Днепровский,
Yasuaki Masumoto
Publication year - 2000
Publication title -
physical review. b, condensed matter
Language(s) - English
Resource type - Journals
eISSN - 1095-3795
pISSN - 0163-1829
DOI - 10.1103/physrevb.62.7420
Subject(s) - exciton , photoluminescence , dielectric , semiconductor , condensed matter physics , materials science , photoluminescence excitation , quantum dot , biexciton , quantum well , band gap , quantum wire , electron , absorption spectroscopy , molecular physics , optoelectronics , physics , optics , laser , quantum mechanics
We present both theoretical and experimental investigations of optical properties of excitons in semiconductor–insulator quantum wires. Spectra of linear and nonlinear absorption, photoluminescence and its polarization, photoluminescence excitation, time-resolved photoluminescence of GaAs, CdSe, and InP quantum wires 4–6 nm in diameter, crystallized in dielectric matrix, demonstrate the prominent excitonic behavior. In these structures an essential difference of dielectric constants of constituent materials leads to a considerable enhancement of excitons, the binding energies ranging from 120 meV to 260 meV and exciton transitions being well distinguished in nanowires with sufficient dispersion of diameter even at room temperature. A theoretical approach to calculations of the exciton parameters in a semiconductor–insulator cylindrical quantum wire of finite diameter is developed. This approach accounts for a band-gap renormalization due to the spatial confinement and self-image effect, as well as for a dielectric enhancement of the electron-hole interaction. The calculated exciton transition energies and absorption spectra are consistent with the experimental results

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom