z-logo
open-access-imgOpen Access
Magnetic field dependence of the low-energy spectrum of a two-electron quantum dot
Author(s) -
C. E. Creffield,
J. H. Jefferson,
Sarben Sarkar,
D. L. J. Tipton
Publication year - 2000
Publication title -
physical review. b, condensed matter
Language(s) - English
Resource type - Journals
eISSN - 1095-3795
pISSN - 0163-1829
DOI - 10.1103/physrevb.62.7249
Subject(s) - physics , hartree , quantum dot , electron , magnetic field , coulomb , amplitude , condensed matter physics , eigenvalues and eigenvectors , quantum mechanics , quantum electrodynamics , hubbard model , superconductivity
The low-energy eigenstates of two interacting electrons in a square quantum dot in a magnetic field are determined by numerical diagonalization. In the strong correlation regime, the low-energy eigenstates show Aharonov-Bohm-type oscillations, which decrease in amplitude as the field increases. These oscillations, including the decrease in amplitude, may be reproduced to good accuracy by an extended Hubbard model in a basis of localized one-electron Hartree states. The hopping matrix element t comprises the usual kinetic energy term plus a term derived from the Coulomb interaction. The latter is essential to get good agreement with exact results. The phase of t gives rise to the usual Peierls factor, related to the flux through a square defined by the peaks of the Hartree wave functions. The magnitude of t decreases slowly with magnetic field as the Hartree functions become more localized, giving rise to the decreasing amplitude of the Aharonov-Bohm oscillations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom