Ab initiostep and kink formation energies on Pb(111)
Author(s) -
Peter J. Feibelman
Publication year - 2000
Publication title -
physical review. b, condensed matter
Language(s) - English
Resource type - Journals
eISSN - 1095-3795
pISSN - 0163-1829
DOI - 10.1103/physrevb.62.17020
Subject(s) - ab initio , scanning tunneling microscope , energy (signal processing) , ab initio quantum chemistry methods , atomic physics , physics , trigonal crystal system , symmetry (geometry) , materials science , molecular physics , condensed matter physics , crystallography , chemistry , quantum mechanics , geometry , crystal structure , mathematics , molecule
Ab-initio formation energies for (100)- and (111)-microfacet steps on Pb(111) are in satisfactory agreement with measured values, given that these values are known only as well as the Pb(111) surface energy; the calculated step-energy ratio, 1.29, is within {approximately}8% of experiment. In contrast, calculated kink-formation energies, 41 and 60 meV for the two step types, are 40--50% below published experimental values derived from STM images. The discrepancy results from interpreting the images with a step-stiffness vs. kink-energy relation appropriate to (100) but not (111) surfaces. Good agreement is found when the step-stiffness data are reinterpreted, taking proper account of the trigonal symmetry of Pb(111)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom