z-logo
open-access-imgOpen Access
Critical behavior of the random-field Ising model
Author(s) -
Misha Gofman,
Joan Adler,
Am Aharony,
A. B. Harris,
Moshe Schwartz
Publication year - 1996
Publication title -
physical review. b, condensed matter
Language(s) - English
Resource type - Journals
eISSN - 1095-3795
pISSN - 0163-1829
DOI - 10.1103/physrevb.53.6362
Subject(s) - physics , ising model , combinatorics , condensed matter physics , mathematics
We study the critical properties of the random field Ising model in general dimension d using high-temperature expansions for the susceptibility, \ensuremath{\chi}=${\ensuremath{\sum}}_{\mathit{j}}$ [〈${\mathrm{\ensuremath{\sigma}}}_{\mathit{i}}$${\mathrm{\ensuremath{\sigma}}}_{\mathit{j}}$${\mathrm{〉}}_{\mathit{T}}$-〈${\mathrm{\ensuremath{\sigma}}}_{\mathit{i}}$${\mathrm{〉}}_{\mathit{T}}$〈${\mathrm{\ensuremath{\sigma}}}_{\mathit{j}}$${\mathrm{〉}}_{\mathit{T}}$${]}_{\mathit{h}}$ and the structure factor, G=${\ensuremath{\sum}}_{\mathit{j}}$[〈${\mathrm{\ensuremath{\sigma}}}_{\mathit{i}}$${\mathrm{\ensuremath{\sigma}}}_{\mathit{j}}$${\mathrm{〉}}_{\mathit{T}}$${]}_{\mathit{h}}$, where 〈${\mathrm{〉}}_{\mathit{T}}$ indicates a canonical average at temperature T for an arbitrary configuration of random fields and [${]}_{\mathit{h}}$ indicates an average over random fields. We treated two distributions of random fields, the bimodal in which each ${\mathit{h}}_{\mathit{i}}$=\ifmmode\pm\else\textpm\fi{}${\mathit{h}}_{0}$ and a Gaussian distribution in which each ${\mathit{h}}_{\mathit{i}}$ has variance ${\mathit{h}}_{0}^{2}$. We obtained series for \ensuremath{\chi} and G in the form ${\ensuremath{\sum}}_{\mathit{n}=1,15}$${\mathit{a}}_{\mathit{n}}$(g,d)(J/T${)}^{\mathit{n}}$, where J is the exchange constant and the coefficients ${\mathit{a}}_{\mathit{n}}$(g,d) are polynomials in g\ensuremath{\equiv}${\mathit{h}}_{0}^{2}$/${\mathit{J}}^{2}$ and in d. We assume that as T approaches its critical value, ${\mathit{T}}_{\mathit{c}}$, one has \ensuremath{\chi}\ensuremath{\sim}(T-${\mathit{T}}_{\mathit{c}}$${)}^{\mathrm{\ensuremath{-}}\ensuremath{\gamma}}$ and G\ensuremath{\sim}(T-${\mathit{T}}_{\mathit{c}}$${)}^{\mathrm{\ensuremath{-}}\ensuremath{\gamma}\mathrm{\ifmmode\bar\else\textasciimacron\fi{}}}$. For dimensions above d=2 we find a range of values of g for which the critical exponents obtained from our series seem not to depend on g.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom