z-logo
open-access-imgOpen Access
Longitudinal spin relaxation in simple stochastic models for disordered systems
Author(s) -
P. Borgs,
K. W. Kehr,
Paul Heitjans
Publication year - 1995
Publication title -
physical review. b, condensed matter
Language(s) - English
Resource type - Journals
eISSN - 1095-3795
pISSN - 0163-1829
DOI - 10.1103/physrevb.52.6668
Subject(s) - spins , exponent , relaxation (psychology) , condensed matter physics , physics , exponential function , statistical physics , mathematics , psychology , social psychology , mathematical analysis , linguistics , philosophy
The relaxation of single probe spins was investigated for simple models of systems with quenched disorder. The spin relaxation was calculated for a two-site model with arbitrarily oriented magnetic fields and the result was averaged over various distributions of the fields, and of the hopping rates of the spin. On an intermediate time scale, a modified Kubo-Toyabe behavior is obtained for large hopping rates, in agreement with recent SR experiments. A stretched-exponential decay of the spin polarization is obtained at longer times. The Kohlrausch exponent is found to be field and hopping-rate dependent, in qualitative agreement with recent NMR and -NMR experiments. The resulting longitudinal relaxation rate still does not show the significant deviations from the Bloembergen-Purcell-Pound (BPP) behavior that are typical for glassy systems. Therefore, the random two-frequency model was extended to include time-dependent renewals of the environment. This modification may yield asymmetric peaks for the longitudinal relaxation rate in the BPP plot for very large renewal rates. © 1995 The American Physical Society

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom