Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
Author(s) -
Chengteh Lee,
Weitao Yang,
Robert G. Parr
Publication year - 1988
Publication title -
physical review. b, condensed matter
Language(s) - English
Resource type - Journals
eISSN - 1095-3795
pISSN - 0163-1829
DOI - 10.1103/physrevb.37.785
Subject(s) - kinetic energy , density matrix , electronic correlation , physics , energy (signal processing) , electron density , atomic physics , hartree–fock method , potential energy , electron , quantum mechanics , quantum
A correlation-energy formula due to Colle and Salvetti [Theor. Chim. Acta 37, 329 (1975)], in which the correlation energy density is expressed in terms of the electron density and a Laplacian of the second-order Hartree-Fock density matrix, is restated as a formula involving the density and local kinetic-energy density. On insertion of gradient expansions for the local kinetic-energy density, density-functional formulas for the correlation energy and correlation potential are then obtained. Through numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, it is demonstrated that these formulas, like the original Colle-Salvetti formulas, give correlation energies within a few percent.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom