z-logo
open-access-imgOpen Access
Sirtuins in Aging and Disease
Author(s) -
Leonard Guarente
Publication year - 2007
Publication title -
cold spring harbor symposia on quantitative biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.615
H-Index - 77
eISSN - 1943-4456
pISSN - 0091-7451
DOI - 10.1101/sqb.2007.72.024
Subject(s) - mitochondrial biogenesis , sirtuin , caenorhabditis elegans , calorie restriction , biogenesis , biology , sirtuin 1 , mitochondrion , resveratrol , regulator , sirt3 , microbiology and biotechnology , nad+ kinase , organelle biogenesis , function (biology) , activator (genetics) , gene , genetics , biochemistry , acetylation , downregulation and upregulation , endocrinology , enzyme
Sirtuin genes function as anti-aging genes in yeast, Caenorhabditis elegans, and Drosophila. The NAD requirement for sirtuin function indicates a link between aging and metabolism, and a boost in sirtuin activity may in part explain how calorie restriction extends life span. In mammals, one of the substrates of the SIR2 ortholog, SIRT1, is a regulator of mitochondrial biogenesis, PGC-1alpha. Indeed, the putative SIRT1 activator resveratrol has been shown to stimulate mitochondrial biogenesis and deliver health benefits in treated mice. I explore here how mitochondrial biogenesis may have beneficial effects on aging and, perhaps, diseases of aging. In particular, I speculate that SIRT1-mediated mitochondrial biogenesis may reduce the production of reactive oxygen species, a possible cause of aging, and offer two possible mechanisms for this effect. An understanding of how calorie restriction works may lead to novel drugs to combat diseases of aging.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom