z-logo
open-access-imgOpen Access
Genetic Control by cis-Acting Regulatory RNAs in Bacillus subtilis: General Principles and Prospects for Discovery
Author(s) -
Irnov Irnov,
Alexis Kertsburg,
Wade C. Winkler
Publication year - 2006
Publication title -
cold spring harbor symposia on quantitative biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.615
H-Index - 77
eISSN - 1943-4456
pISSN - 0091-7451
DOI - 10.1101/sqb.2006.71.021
Subject(s) - bacillus subtilis , transfer rna , rna , biology , organism , gene , genome , computational biology , stringent response , regulation of gene expression , genetics , non coding rna , bacteria , regulatory sequence , model organism , escherichia coli
In recent years, Bacillus subtilis, the model organism for gram-positive bacteria, has been a focal point for study of posttranscriptional regulation. In this bacterium, more than 70 regulatory RNAs have been discovered that respond to intracellular proteins, tRNAs, and small-molecule metabolites. In total, these RNA elements are responsible for genetic control of more than 4.1% of the genome-coding capacity. This pool of RNA-based regulatory elements is now large enough that it has become a worthwhile endeavor to examine their general features and to extrapolate these simple observations to the remaining genome in an effort to predict how many more may remain unidentified. Furthermore, both metabolite- and tRNA-sensing regulatory RNAs are remarkably widespread throughout eubacteria, and it is therefore becoming increasingly clear that some of the observations for B. subtilis gene regulation will be generally applicable to many different species.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom