z-logo
open-access-imgOpen Access
Sensing Metabolic Signals with Nascent RNA Transcripts: The T Box and S Box Riboswitches as Paradigms
Author(s) -
Tina M. Henkin,
Frank J. Grundy
Publication year - 2006
Publication title -
cold spring harbor symposia on quantitative biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.615
H-Index - 77
eISSN - 1943-4456
pISSN - 0091-7451
DOI - 10.1101/sqb.2006.71.020
Subject(s) - riboswitch , computational biology , rna , computer science , biology , non coding rna , genetics , gene
Recent studies in a variety of bacterial systems have revealed a number of regulatory systems in which the 5' region of a gene plays a key role in regulation of the downstream coding sequences. These RNA regions act in cis to determine if the full-length transcript will be synthesized or if the coding sequence(s) will be translated. Each class of system includes an RNA element whose structure is modulated in response to a specific regulatory signal, and the signals measured can include small molecules, small RNAs (including tRNA), and physical parameters such as temperature. Multiple sets of genes can be regulated by a particular mechanism, and multiple systems of this type, each of which responds to a specific signal, can be present in a single organism. In addition, different classes of RNA elements can be found that respond to a particular signal, indicating the existence of multiple alternate solutions to the same regulatory problem. The T box and S box systems, which respond to uncharged tRNA and S-adenosylmethionine (SAM), respectively, provide paradigms of two systems of this type.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom