z-logo
open-access-imgOpen Access
In Vivo Transfection of Naked DNA into Xenopus Tadpole Tail Muscle
Author(s) -
Lindsey Marshall,
Fabrice Girardot,
Barbara A. Demeneix,
Laurent Coen
Publication year - 2017
Publication title -
cold spring harbor protocols
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.674
H-Index - 51
eISSN - 1940-3402
pISSN - 1559-6095
DOI - 10.1101/pdb.prot099366
Subject(s) - xenopus , tadpole (physics) , plasmid , transfection , transgene , biology , gene , microbiology and biotechnology , promoter , dna , in vivo , naked dna , gene expression , genetics , physics , particle physics
In vivo gene transfer systems are important to study foreign gene expression and promoter regulation in an organism, with the benefit of exploring this in an integrated environment. Direct injection of plasmids encoding exogenous promoters and genes into muscle has numerous advantages: the protocol is easy, efficient, and shows time-persistent plasmid expression in transfected muscular cells. After injecting naked-DNA plasmids into tadpole tail muscle, transgene expression is strong, reproducible, and correlates with the amount of DNA injected. Moreover, expression is stable as long as the tadpoles remain, or are maintained, in premetamorphic stages. By directly expressing genes and regulated promoters in Xenopus tadpole muscle in vivo, one can exploit the powerful experimental advantages of gene transfer systems in an intact, physiologically normal animal.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom