Cell Cycle Synchronization of Schizosaccharomyces pombe by Centrifugal Elutriation of Small Cells
Author(s) -
Iain Hagan,
Ágnes Grallert,
Viesturs Simanis
Publication year - 2016
Publication title -
cold spring harbor protocols
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.674
H-Index - 51
eISSN - 1940-3402
pISSN - 1559-6095
DOI - 10.1101/pdb.prot091231
Subject(s) - elutriation , cell division , cell cycle , schizosaccharomyces pombe , cell synchronization , coulter counter , biology , microbiology and biotechnology , cell , genetics , chemistry , yeast , saccharomyces cerevisiae , organic chemistry
Division of Schizosaccharomyces pombe by medial fission produces identically sized daughter cells that grow by tip extension until their own division is prompted by reaching the same critical size for division as the parental cell. The fidelity of this size control in the absence of perturbation means that cells of the same size are at the same point in the cell cycle. Size selection of small cells from an asynchronous culture by centrifugal elutriation permits generation of synchronous cultures large enough for biochemical analysis. The changes observed in the synchronized cell cycle progression of such cultures are representative of those that accompany cell cycle progression of individual cells. Here, we describe how size selection with the Beckman Coulter JE-5.0 rotor can be used to generate synchronized cultures. Because of the continuous passage of medium through the rotor throughout the procedure, elutriation is considered to have less impact on the integrity of the cell cycle than other approaches. Two protocols are presented here: The first generates a 2-L culture ideal for detailed biochemical analysis, whereas the second allows rapid generation and simultaneous analysis of three smaller (200-mL) cultures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom