Isolation and Laboratory Domestication of Natural Yeast Strains
Author(s) -
Gianni Liti,
Jonas Warringer,
Anders Blomberg
Publication year - 2017
Publication title -
cold spring harbor protocols
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.674
H-Index - 51
eISSN - 1940-3402
pISSN - 1559-6095
DOI - 10.1101/pdb.prot089052
Subject(s) - yeast , isolation (microbiology) , saccharomyces , saccharomyces cerevisiae , domestication , microorganism , population , biology , fermentation , strain (injury) , microbiology and biotechnology , bacteria , food science , biochemistry , genetics , medicine , environmental health , anatomy
The process from yeast isolation to their use in laboratory experiments is lengthy. Historically, Saccharomyces strains were easily obtained by sampling alcoholic fermentation processes or other substrates associated with human activity in which Saccharomyces was heavily enriched. In contrast, wild Saccharomyces yeasts are found in complex microbial communities and small population sizes, making isolation challenging. We have overcome this problem by enriching yeast on media favoring the growth of Saccharomyces over other microorganisms. The isolation process is usually followed by molecular characterization that allows the strain identification. Finally, yeast isolated from domestic or wild environments need to be genetically manipulated before they can be used in laboratory experiments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom