z-logo
open-access-imgOpen Access
A role for prefrontal calcium-sensitive protein phosphatase and kinase activities in working memory
Author(s) -
Jason D. Runyan,
Anthony N. Moore,
Pramod K. Dash
Publication year - 2005
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.89405
Subject(s) - working memory , prefrontal cortex , neuroscience , protein kinase a , calcineurin , phosphatase , protein kinase c , chemistry , psychology , microbiology and biotechnology , kinase , biochemistry , biology , phosphorylation , cognition , medicine , transplantation
The prefrontal cortex is involved in the integration and interpretation of information for directing thoughts and planning action. Working memory is defined as the active maintenance of information in mind and is thought to lie at the core of many prefrontal functions. Although dopamine and other neurotransmitters have been implicated, the intracellular events activated by their receptors that influence working memory are poorly understood. We demonstrate that working memory involves transient changes in prefrontal G(q/11)-signaling and in calcium-dependent intracellular protein phosphatase and kinase activity. Interestingly, inhibition of the calcium activated phosphatase calcineurin impaired, while calcium/calmodulin dependent kinase II (CaMKII) and calcium-dependent protein kinase C (PKC) enhanced, working memory. Our findings suggest that the active maintenance of information required for working memory involves transient changes in the balance of these enzymes' activities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom