z-logo
open-access-imgOpen Access
Activation of exchange protein activated by cyclic-AMP enhances long-lasting synaptic potentiation in the hippocampus
Author(s) -
Jennifer N. Gelinas,
Jessica L. Banko,
Melinda Peters,
Eric Klann,
Edwin J. Weeber,
Peter Nguyen
Publication year - 2008
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.830008
Subject(s) - long term potentiation , synaptic plasticity , protein kinase a , microbiology and biotechnology , neurotransmission , guanine nucleotide exchange factor , mapk/erk pathway , chemistry , synaptic fatigue , hippocampal formation , metaplasticity , neuroscience , signal transduction , kinase , biology , biochemistry , receptor
cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term potentiation (LTP) of synaptic strength. However, cAMP may also initiate signaling via a guanine nucleotide exchange protein directly activated by cAMP (Epac). The role of Epac in hippocampal synaptic plasticity is unknown. We found that in area CA1 of mouse hippocampal slices, activation of Epac enhances maintenance of LTP without affecting basal synaptic transmission. The persistence of this form of LTP requires extracellular signal-regulated protein kinase (ERK) and new protein synthesis, but not transcription. Because ERK is involved in translational control of long-lasting plasticity and memory, our data suggest that Epac is a crucial link between cAMP and ERK during some forms of protein synthesis-dependent LTP. Activation of Epac represents a novel signaling pathway for rapid regulation of the stability of enduring forms of LTP and, perhaps, of hippocampus- dependent long-term memories.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom