z-logo
open-access-imgOpen Access
Task Requirements Influence Sensory Integration During Grasping in Humans
Author(s) -
Daniel Säfström,
Bei B. Edin
Publication year - 2004
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.71804
Subject(s) - haptic technology , object (grammar) , sensory system , task (project management) , adaptation (eye) , weighting , process (computing) , artificial intelligence , psychology , computer science , computer vision , stereotaxy , transformation (genetics) , communication , cognitive psychology , neuroscience , engineering , medicine , biochemistry , chemistry , systems engineering , gene , radiology , operating system
The sensorimotor transformations necessary for generating appropriate motor commands depend on both current and previously acquired sensory information. To investigate the relative impact (or weighting) of visual and haptic information about object size during grasping movements, we let normal subjects perform a task in which, unbeknownst to the subjects, the object seen (visual object) and the object grasped (haptic object) were never the same physically. When the haptic object abruptly became larger or smaller than the visual object, subjects in the following trials automatically adapted their maximum grip aperture when reaching for the object. This adaptation was not dependent on conscious processes. We analyzed how visual and haptic information were weighted during the course of sensorimotor adaptation. The adaptation process was quicker and relied more on haptic information when the haptic objects increased in size than when they decreased in size. As such, sensory weighting seemed to be molded to avoid prehension error. We conclude from these results that the impact of a specific source of sensory information on the sensorimotor transformation is regulated to satisfy task requirements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom