z-logo
open-access-imgOpen Access
Inflammation Causes a Long-Term Hyperexcitability in the Nociceptive Sensory Neurons ofAplysia
Author(s) -
Maryjane Farr,
J Mathews,
Defen Zhu,
Richard T. Ambron
Publication year - 1999
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.6.3.331
Subject(s) - aplysia , nociception , neuroscience , inflammation , immunocytochemistry , sensory neuron , nerve injury , sensory system , nerve growth factor , hyperalgesia , nervous system , sensory nerve , noxious stimulus , chemistry , biology , immunology , receptor , endocrinology , biochemistry
Nerve injury, tissue damage, and inflammation all cause hyperalgesia. A factor contributing to this increased sensitivity is a long-term (>24 hr) hyperexcitability (LTH) in the sensory neurons that mediate the responses. Using the cluster of nociceptive sensory neurons in Aplysia californica as a model, we are examining how inflammation induces LTH. A general inflammatory response was induced by inserting a gauze pad into the animal. Within 4 days, the gauze is enmeshed in an amorphous material that contains hemocytes, which comprise a cellular immune system. Concurrently, LTH appears in both ipsilateral and contralateral sensory neurons. The LTH is manifest as increased action potential discharge to a normalized stimulus. Immunocytochemistry revealed that hemocytes have antigens recognized by antibodies to TGFβ1, IL-6, and 5HT. When a localized inflammation was elicited on a nerve, hemocytes containing the TGFβ1 antigen were present near axons within the nerve and those containing the IL-6 were on the surface. Western blots of hemocytes, or of gauze that had induced a foreign body response, contained a 28-kD polypeptide recognized by the anti-TGFβ1 antibody. Exposure of the nervous system to recombinant human TGFβ1 elicited increased firing of the nociceptive neurons and a decrease in threshold. The TGFβ1 also caused an activation of protein kinase C (PKC) in axons but did not affect a kinase that is activated in axons after injury. Our findings, in conjunction with previous results, indicate that a TGFβ1-homolog can modulate the activity of neurons that respond to noxious stimuli. This system could also contribute to interactions between the immune and nervous systems via regulation of PKC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom