z-logo
open-access-imgOpen Access
Improvements in Hippocampal-Dependent Learning and Decremental Attention in 5-HT3 Receptor Overexpressing Mice
Author(s) -
Amber V. Harrell,
Andrea M. Allan
Publication year - 2003
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.56103
Subject(s) - prepulse inhibition , fear conditioning , freezing behavior , psychology , neuroscience , extinction (optical mineralogy) , latent inhibition , 5 ht receptor , hippocampal formation , hippocampus , startle response , context (archaeology) , serotonergic , chemistry , receptor , amygdala , serotonin , medicine , endocrinology , classical conditioning , conditioning , biology , schizophrenia (object oriented programming) , mineralogy , statistics , paleontology , mathematics , psychiatry
The 5-HT3 receptor for serotonin is expressed within limbic structures and is known to modulate neurotransmitter release, suggesting that this receptor may influence learning and memory. Perturbations in serotonergic neurotransmission lead to changes in the ability to attend, learn, and remember. To examine the role of 5-HT3 receptors in learning, memory, and attention, 5-HT3 receptor overexpressing (5-HT3-OE) transgenic mice and their wild-type littermates (WT) were tested in Pavlovian contextual and cued fear conditioning, fear extinction, and latent inhibition (LI) paradigms. Prepulse inhibition (PPI) was assessed to reveal changes in sensorimotor gating. Additionally, anxious behaviors, shock sensitivity, and reactions to novel stimuli were evaluated. 5-HT3-OE mice displayed enhanced contextual conditioning, whereas cued conditioning remained the same as that of WT mice. 5-HT3-OE mice did not differ from WT in extinction rates to either the context or cue. LI was enhanced for 5-HT3-OE mice compared to WT. PPI remained unchanged. No differences in sensitivity to footshock or startle were found. However, 5-HT3-OE mice demonstrated heightened exploratory behavior in response to novel environmental stimuli and decreased anxiety as measured in the elevated plus-maze. Results indicate that overexpression of the 5-HT3 receptor in mouse forebrain results in enhanced hippocampal-dependent learning and attention. Enhanced inspective behavior in response to novelty may contribute to the observed improvements in learning, memory, and attention due to 5-HT3 receptor overexpression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom