z-logo
open-access-imgOpen Access
Temporal Specificity of Perceptual Learning in an Auditory Discrimination Task
Author(s) -
Uma R. Karmarkar,
Dean V. Buonomano
Publication year - 2003
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.55503
Subject(s) - stimulus (psychology) , time perception , perception , auditory perception , psychology , interval temporal logic , speech recognition , perceptual learning , generalization , neuroscience , computer science , artificial intelligence , cognitive psychology , mathematics , mathematical analysis , description logic
Although temporal processing is used in a wide range of sensory and motor tasks, there is little evidence as to whether a single centralized clock or a distributed system underlies timing in the range of tens to hundreds of milliseconds. We investigated this question by studying whether learning on an auditory interval discrimination task generalizes across stimulus types, intervals, and frequencies. The degree to which improvements in timing carry over to different stimulus features constrains the neural mechanisms underlying timing. Human subjects trained on a 100- or 200-msec interval discrimination task showed an improvement in temporal resolution. This learning generalized to a perceptually distinct duration stimulus, as well as to the trained interval presented with tones at untrained spectral frequencies. The improvement in performance did not generalize to untrained intervals. To determine if spectral generalization was dependent on the importance of frequency information in the task, subjects were simultaneously trained on two different intervals identified by frequency. As a whole, our results indicate that the brain uses circuits that are dedicated to specific time spans, and that each circuit processes stimuli across nontemporal stimulus features. The patterns of generalization additionally indicate that temporal learning does not rely on changes in early, subcortical processing, because the nontemporal features are encoded by different channels at early stages.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom