z-logo
open-access-imgOpen Access
Working Memory for Temporal and Nontemporal Events in Monkeys
Author(s) -
Yoshio Sakurai
Publication year - 2001
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.43901
Subject(s) - stimulus (psychology) , working memory , psychology , engram , audiology , discrimination learning , coding (social sciences) , short term memory , cognition , communication , cognitive psychology , neuroscience , statistics , mathematics , medicine
This is the first report that introduces appropriate behavioral tasks for monkeys for investigations of working memory for temporal and nontemporal events. Using several behavioral tests, the study also shows how temporal information is coded during retention intervals in the tasks. Each of three monkeys was trained with two working memory tasks: delayed matching-to-sample of stimulus duration (DMS-D) and delayed matching-to-sample of stimulus color (DMS-C). The two tasks employed an identical apparatus and responses and differed only in the temporal and nontemporal attribute of the stimuli to be retained for correct performance. When a retention interval between the sample and comparison stimuli was prolonged, the monkeys made more incorrect responses to short samples in the DMS-C task, suggesting "trace decay" of memory for short stimuli. However, the same monkeys showed no such increase in incorrect responses to short samples in the DMS-D task, suggesting active coding of temporal information, that is, the length of stimulus duration, during the retention interval. When variable lengths of samples were presented with a fixed retention interval, the monkeys made more incorrect responses when length differences between short and long samples were small in the DMS-D task, but not in the DMS-C task. This suggests that the codes of working memory retained in the DMS-D task were not absolute (analogical) but rather were relative (categorical) and related to differences in the duration of the samples.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom