z-logo
open-access-imgOpen Access
Hippocampal Activations during Repetitive Learning and Recall of Geometric Patterns
Author(s) -
Georg Grön,
Daniel Bittner,
Bernd Schmitz,
Arthur Wunderlich,
Reinhard Tomczak,
Matthias W. Riepe
Publication year - 2001
Publication title -
learning and memory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 136
eISSN - 1549-5485
pISSN - 1072-0502
DOI - 10.1101/lm.42901
Subject(s) - recall , hippocampal formation , memorization , psychology , functional magnetic resonance imaging , episodic memory , encoding (memory) , neuroscience , hippocampus , cognitive psychology , free recall , brain mapping , novelty , cognition , social psychology
Hippocampal activation is required for episodic memory. Encoding and retrieval of novel and memorable items have been related to different locations in the hippocampus; however, the data remain ambiguous. The application of a newly designed keyboard allowed investigation of brain activation during encoding and free immediate and delayed recall with functional magnetic resonance imaging (fMRI) in young healthy controls (n = 12). Because of the repetitive learning and recall conditions, an individual learning gradient was used to contrast neural activity at different individual levels of novelty. During learning, subjects were asked to memorize 10 geometric patterns requiring the establishment of intra-item associations for memorization. After learning, subjects were asked to recall the items actively via the keyboard. Learning and recall were alternated five times. Delayed recall was scanned about 15 min after the fifth immediate recall condition without subjects having seen the items again. Left-sided anterior hippocampal activity was observed during conditions of initial learning as well as maximum recall. Neural activity during delayed recall did not reveal hippocampal responses and was characterized by a transition of neural activity from occipitoparietal regions to bilateral temporal cortices. We conclude that both lateralization and segregation depend on the specific relational characteristics of the stimuli requiring establishment of intra-item associations for encoding as well as retrieval. The absence of hippocampal activation during delayed recall together with the increase of lateral temporal involvement possibly corresponds with an emerging transition from episodic to long-term memory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom