z-logo
open-access-imgOpen Access
Large-Scale Statistical Analyses of Rice ESTs Reveal Correlated Patterns of Gene Expression
Author(s) -
Rob M. Ewing,
Alia Ben Kahla,
Olivier Poirot,
Fabrice Lopez,
Stéphane Audic,
JeanMichel Claverie
Publication year - 1999
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.9.10.950
Subject(s) - biology , expressed sequence tag , gene , computational biology , genetics , gene expression , arabidopsis thaliana , identification (biology) , cluster analysis , gene expression profiling , functional genomics , complementary dna , genomics , genome , artificial intelligence , botany , computer science , mutant
Large, publicly available collections of expressed sequence tags (ESTs) have been generated from Arabidopsis thaliana and rice (Oryza sativa). A potential, but relatively unexplored application of this data is in the study of plant gene expression. Other EST data, mainly from human and mouse, have been successfully used to point out genes exhibiting tissue- or disease-specific expression, as well as for identification of alternative transcripts. In this report, we go a step further in showing that computer analyses of plant EST data can be used to generate evidence of correlated expression patterns of genes across various tissues. Furthermore, tissue types and organs can be classified with respect to one another on the basis of their global gene expression patterns. As in previous studies, expression profiles are first estimated from EST counts. By clustering gene expression profiles or whole cDNA library profiles, we show that genes with similar functions, or cDNA libraries expected to share patterns of gene expression, are grouped together. Promising uses of this technique include functional genomics, in which evidence of correlated expression might complement (or substitute for) those of sequence similarity in the annotation of anonymous genes and identification of surrogate markers. The analysis presented here combines the application of a correlation-based clustering method with a graphical color map allowing intuitive visualization of patterns within a large table of expression measurements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom