z-logo
open-access-imgOpen Access
Single-Tube Genotyping without Oligonucleotide Probes
Author(s) -
Søren Germer,
Russell Higuchi
Publication year - 1999
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.9.1.72
Subject(s) - genotyping , molecular inversion probe , snp genotyping , biology , single nucleotide polymorphism , oligonucleotide , primer (cosmetics) , genetics , microbiology and biotechnology , polymerase chain reaction , melting curve analysis , genomic dna , primer dimer , allele , variants of pcr , genotype , dna , gene , multiplex polymerase chain reaction , chemistry , organic chemistry
We report the development of a self-contained (homogeneous), single-tube assay for the genotyping of single-nucleotide polymorphisms (SNPs), which does not rely on fluorescent oligonucleotide probes. The method, which we call Tm-shift genotyping, combines allele-specific PCR with the discrimination between amplification products by their melting temperatures (Tm). Two distinct forward primers, each of which contains a 3'-terminal base that corresponds to one of the two SNP allelic variants, are combined with a common reverse primer in a single-tube reaction. A GC-tail is attached to one of the forward allele-specific primers to increase the Tm of the amplification product from the corresponding allele. PCR amplification, Tm analysis, and allele determination of genomic template DNA are carried out on a fluorescence-detecting thermocycler with a dye that fluoresces when bound to dsDNA. We demonstrate the accuracy and reliability of Tm-shift genotyping on 100 samples typed for two SNPs, and recommend it both as a simple and inexpensive diagnostic tool for genotyping medically relevant SNPs and as a high-throughput SNP genotyping method for gene mapping.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom