z-logo
open-access-imgOpen Access
Large-Scale Protein Annotation through Gene Ontology
Author(s) -
Hanqing Xie,
Alon Wasserman,
Zurit Levine,
Amit Novik,
Vladimir Grebinskiy,
Avi Shoshan,
Liat Mintz
Publication year - 2002
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.86902
Subject(s) - genbank , annotation , biology , gene ontology , computational biology , ontology , genome , genome project , proteome , gene , bioinformatics , genetics , gene expression , philosophy , epistemology
Recent progress in genomic sequencing, computational biology, and ontology development has presented an opportunity to investigate biological systems from a unique perspective, that is, examining genomes and transcriptomes through the multiple and hierarchical structure of Gene Ontology (GO). We report here our development of GO Engine, a computational platform for GO annotation, and analysis of the resultant GO annotations of human proteins. Protein annotation was centered on sequence homology with GO-annotated proteins and protein domain analysis. Text information analysis and a multiparameter cellular localization predictive tool were also used to increase the annotation accuracy, and to predict novel annotations. The majority of proteins corresponding to full-length mRNA in GenBank, and the majority of proteins in the NR database (nonredundant database of proteins) were annotated with one or more GO nodes in each of the three GO categories. The annotations of GenBank and SWISS-PROT proteins are available to the public at the GO Consortium web site.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom