2006 expressed-sequence tags derived from human chromosome 7-enriched cDNA libraries.
Author(s) -
Jeffrey W. Touchman,
Gerard G. Bouffard,
Lauren Weintraub,
Jacquelyn R. Idol,
Li Wang,
Christiane M. Robbins,
Jesse C. Nussbaum,
Michael Lovett,
E. D. Green
Publication year - 1997
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.7.3.281
Subject(s) - expressed sequence tag , biology , genetics , contig , cdna library , complementary dna , gene , chromosome , sequence tagged site , computational biology , gene mapping , genome
The establishment and mapping of gene-specific DNA sequences greatly complement the ongoing efforts to map and sequence all human chromosomes. To facilitate our studies of human chromosome 7, we have generated and analyzed 2006 expressed-sequence tags (ESTs) derived from a collection of direct selection cDNA libraries that are highly enriched for human chromosome 7 gene sequences. Similarity searches indicate that approximately two-thirds of the ESTs are not represented by sequences in the public databases, including those in dbEST. In addition, a large fraction (68%) of the ESTs do not have redundant or overlapping sequences within our collection. Human DNA-specific sequence-tagged sites (STSs) have been developed from 190 of the ESTs. Remarkably, 180 (96%) of these STSs map to chromosome 7, demonstrating the robustness of chromosome enrichment in constructing the direct selection cDNA libraries. Thus far, 140 of these EST-specific STSs have been assigned unequivocally to YAC contigs that are distributed across the chromosome. Together, these studies provide > 2000 ESTs highly enriched for chromosome 7 gene sequences, 180 new chromosome 7 STSs corresponding to ESTs, and a definitive demonstration of the ability to enrich for chromosome-specific cDNAs by direct selection. Furthermore, the libraries, sequence data, and mapping information will contribute to the construction of a chromosome 7 transcript map.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom