z-logo
open-access-imgOpen Access
PolyScan: An automatic indel and SNP detection approach to the analysis of human resequencing data
Author(s) -
Ken Chen,
Michael D. McLellan,
Li Ding,
Michael C. Wendl,
Yumi Kasai,
Richard K. Wilson,
Elaine R. Mardis
Publication year - 2007
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.6151507
Subject(s) - indel , biology , genetics , indel mutation , single nucleotide polymorphism , human genome , snp , context (archaeology) , computational biology , 1000 genomes project , genome , mutation , tag snp , identification (biology) , gene , genotype , paleontology , botany
Small insertions and deletions (indels) and single nucleotide polymorphisms (SNPs) are common genetic variants that are thought to be associated with a wide variety of human diseases. Owing to the genome's size and complexity, manually characterizing each one of these variations in an individual is not practical. While significant progress has been made in automated single-base mutation discovery from the sequences of diploid PCR products, automated and reliable detection of indels continues to pose difficult challenges. In this paper, we present PolyScan, an algorithm and software implementation designed to provide de novo heterozygous indel detection and improved SNP identification in the context of high-throughput medical resequencing. Tests on a human diploid PCR-based sequence data set, consisting of 90,270 traces from 13 genes, indicate that PolyScan identified approximately 90% of the 151 consensus indel sites and approximately 84% of the 1546 heterozygous indels previously identified by manual inspection. Tests on tumor-derived data show that PolyScan better identifies high-quality, low-level mutations as compared with other mutation detection software. Moreover, SNP identification improves when reprocessing the results of other programs. These results suggest that PolyScan may play a useful role in the post human genome project research era.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom