z-logo
open-access-imgOpen Access
Structural Organization of the WD repeat protein-encoding gene HIRA in the DiGeorge syndrome critical region of human chromosome 22.
Author(s) -
Stéphanie Lorain,
Suzanne Demczuk,
Valérie Lamour,
Steve Toth,
Alain Aurias,
B.A. Roe,
Marta M. Lipinski
Publication year - 1996
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.6.1.43
Subject(s) - biology , genetics , exon , haploinsufficiency , gene , intron , digeorge syndrome , microbiology and biotechnology , phenotype
The human gene HIRA lies within the smallest critical region for the DiGeorge syndrome (DGS), a haploinsufficiency developmental disorder associated with instertitial deletions in most patients in a juxtacentromeric region of chromosome 22. The HIRA protein sequence can be aligned over its entire length with Hir1 and Hir2, two yeast proteins with a regulatory function in chromatin assembly. The HIRA transcription unit was found to spread over approximately 100 kb of the DGS critical region. The human transcript is encoded from 25 exons between 59 and 861 bp in size. Domains of highest conservation with Hir1 and Hir2 are encoded from exons 1-11 and 13-25, respectively. The amino- and carboxy-terminal regions of homology are separated from each other by a domain unique to HIRA that is encoded from a single exon. Seven WD repeats are conserved between yeast and man in the amino-terminal region of the HIR proteins. Individual repeats were found to be encoded from one, two, or three exons of the HIRA gene. End sequences have been obtained for all 24 introns, opening the way to PCR amplification of the entire coding sequence starting from genomic DNA. Point mutations can also be sought in 16 of the 24 introns that are readily PCR-amplifiable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom