z-logo
open-access-imgOpen Access
Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements
Author(s) -
Josée Dostie,
Todd Richmond,
Ramy Arnaout,
Rebecca R. Selzer,
William L. Lee,
Tracey Honan,
Eric D. Rubio,
Anton Krumm,
Justin Lamb,
Chad Nusbaum,
Roland D. Green,
Job Dekker
Publication year - 2006
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.5571506
Subject(s) - biology , chromosome conformation capture , locus (genetics) , genetics , gene , chromatin , genome , chromosome , copy number variation , computational biology , gene mapping , enhancer , gene expression
Physical interactions between genetic elements located throughout the genome play important roles in gene regulation and can be identified with the Chromosome Conformation Capture (3C) methodology. 3C converts physical chromatin interactions into specific ligation products, which are quantified individually by PCR. Here we present a high-throughput 3C approach, 3C-Carbon Copy (5C), that employs microarrays or quantitative DNA sequencing using 454-technology as detection methods. We applied 5C to analyze a 400-kb region containing the human beta-globin locus and a 100-kb conserved gene desert region. We validated 5C by detection of several previously identified looping interactions in the beta-globin locus. We also identified a new looping interaction in K562 cells between the beta-globin Locus Control Region and the gamma-beta-globin intergenic region. Interestingly, this region has been implicated in the control of developmental globin gene switching. 5C should be widely applicable for large-scale mapping of cis- and trans- interaction networks of genomic elements and for the study of higher-order chromosome structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom