Heterozygous carriers of Nijmegen Breakage Syndrome have a distinct gene expression phenotype
Author(s) -
Vivian G. Cheung,
Warren J. Ewens
Publication year - 2006
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.5320706
Subject(s) - biology , genetics , phenotype , allele , heterozygote advantage , gene , loss of heterozygosity , nijmegen breakage syndrome , ataxia telangiectasia , asymptomatic carrier , compound heterozygosity , bloom syndrome , disease , dna , medicine , pathology , dna damage , helicase , rna
Autosomal recessive diseases are those that require mutations in both alleles to exhibit the disorder. Although most recessive conditions are rare, heterozygous carriers of recessive mutations are quite common. In this study, we show that carriers of Nijmegen Breakage Syndrome (NBS) have a distinct gene expression phenotype that differs from that of noncarriers and also from that of carriers of a similar syndrome, Ataxia Telangiectasia (AT). We found 520 genes whose expression levels differ significantly ( P ≤ 0.001) between NBS carriers and controls. By linear discriminant analysis, we found a combination of 16 genes that allows 100% correct classification of individuals as either NBS carriers or noncarriers in a training set with 25 individuals, and in a test set with 52 individuals. When applied to AT carriers, the discriminant function misclassified only one out of 18 AT carriers as an NBS carrier. Our result shows that NBS carriers have a specific gene expression phenotype. It suggests that heterozygous mutations can contribute significantly to natural variation in gene expression. This has implications for the role that heterozygosity for recessive diseases plays in the overall genetic architecture of complex human traits and diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom