Y Chromosome STR Haplotypes and the Genetic Structure of U.S. Populations of African, European, and Hispanic Ancestry
Author(s) -
Manfred Kayser,
Silke Brauer,
Hiltrud Schädlich,
Mechthild Prinz,
Mark A. Batzer,
Peter A. Zimmerman,
Boachie Boatin,
Mark Stoneking
Publication year - 2003
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.463003
Subject(s) - haplotype , biology , genetics , ethnic group , mitochondrial dna , genetic heterogeneity , microsatellite , evolutionary biology , multidimensional scaling , genetic variation , genetic admixture , demography , genotype , population , gene , allele , statistics , mathematics , sociology , anthropology , phenotype
To investigate geographic structure within U.S. ethnic populations, we analyzed 1705 haplotypes on the basis of 9 short tandem repeat (STR) loci on the Y-chromosome from 9-11 groups each of African-Americans, European-Americans, and Hispanics. There were no significant differences in the distribution of Y-STR haplotypes among African-American groups, whereas European-American and Hispanic groups did exhibit significant geographic heterogeneity. However, the significant heterogeneity resulted from one sample; removal of that sample in each case eliminated the significant heterogeneity. Multidimensional scaling analysis of R(ST) values indicated that African-American groups formed a distinct cluster, whereas there was some intermingling of European-American and Hispanic groups. MtDNA data exist for many of these same groups; estimates of the European-American genetic contribution to the African-American gene pool were 27.5%-33.6% for the Y-STR haplotypes and 9%-15.4% for the mtDNA types. The lack of significant geographic heterogeneity among Y-STR and mtDNA haplotypes in U.S ethnic groups means that forensic DNA databases do not need to be constructed for separate geographic regions of the U.S. Moreover, absence of significant geographic heterogeneity for these two loci means that regional variation in disease susceptibility within ethnic groups is more likely to reflect cultural/environmental factors, rather than any underlying genetic heterogeneity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom