z-logo
open-access-imgOpen Access
Human ribosomal RNA gene arrays display a broad range of palindromic structures
Author(s) -
Sandrine Caburet,
Chiara Conti,
Catherine Schurra,
Ronald Lebofsky,
Stuart J. Edelstein,
Aaron Bensimon
Publication year - 2005
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.3970105
Subject(s) - biology , palindrome , genetics , ribosomal rna , nucleolus , palindromic sequence , gene , ribosomal dna , helicase , rna , microbiology and biotechnology , genome , phylogenetics , cytoplasm
The standard model of eukaryotic ribosomal RNA (rRNA) genes involves tandem arrays with hundreds of units in clusters, the nucleolus organizer regions (NORs). A first genomic overview for human cells is reported here for these regions, which have never been sequenced in their totality, by using molecular combing. The rRNA-coding regions are examined by fluorescence on single molecules of DNA with two specific probes that cover their entire length. The standard organization assumed for rDNA units is a transcribed region followed by a nontranscribed spacer. While we confirmed this arrangement in many cases, unorthodox patterns were also observed in normal individuals, with one-third of the rDNA units rearranged to form apparently palindromic structures (noncanonical units) independent of the age of the donors. In cells from individuals with a deficiency in the WRN RecQ helicase (Werner syndrome), the proportion of palindromes increased to one-half. These findings, supported by Southern blot analyses, show that rRNA genes are a mosaic of canonical and (presumably nonfunctional) palindromic units that may be altered by factors associated with genomic instability and pathology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom