z-logo
open-access-imgOpen Access
Abundant novel transcriptional units and unconventional gene pairs on human chromosome 22
Author(s) -
Leonard Lipovich,
MaryClaire King
Publication year - 2005
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.3883606
Subject(s) - biology , genetics , gene , exon , locus (genetics) , chromosome , bacterial artificial chromosome , promoter , trans splicing , euchromatin , rna splicing , genome , gene expression , heterochromatin , rna
Novel transcriptional units (TUs) are EST-supported transcribed features not corresponding to known genes. Unconventional gene pairs (UGPs) are pairs of genes and/or TUs sharing exon-to-exon cis -antisense overlaps or putative bidirectional promoters. Computational TU and UGP discovery followed by manual curation was performed in the entire published 34.9-Mb human chromosome 22 euchromatic sequence. Novel TUs (n = 517) were as abundant as known genes (n = 492) and typically did not have nonprimate DNA and protein homologies. One hundred seventy-one (33%) of TUs, but only 13 (3%) of genes, both lacked nonprimate conservation and localized to gaps in the human–mouse BLASTZ alignment. Novel TUs were richer in exonic primate-specific interspersed repetitive elements ( P = 0.001) and were more likely to rely on splice junctions provided by them, than were known genes: 19% of spliced TUs, versus 5% of spliced genes, had a splice site within a primate-specific repeat. Hence, novel TUs and known genes may represent different portions of the transcriptome. Two hundred nine (21%) of chromosome 22 transcripts participated in 77 cis -antisense and 42 promoter-sharing UGPs. Transcripts involved simultaneously in both UGP types were more common than was expected ( P = 0.01). UGPs were nonrandomly distributed along the sequence: 89 (75%) clustered in distinct regions, the sum of which equaled 4.4 Mb (<13% of the chromosome). Eighty (67%) of the UGPs possessed significant locus structure differences between primates and rodents. Since some TUs may be functional noncoding transcripts and since the cis -regulatory potential of UGPs is well recognized, TUs and UGPs specific to the primate lineage may contribute to the genomic basis for primate-specific phenotypes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom