z-logo
open-access-imgOpen Access
The evolutionary dynamics of α-satellite
Author(s) -
M. Katharine Rudd,
Gregory A. Wray,
Huntington F. Willard
Publication year - 2005
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.3810906
Subject(s) - satellite dna , centromere , biology , satellite , chromosome , genome , genetics , concerted evolution , evolutionary biology , evolutionary dynamics , gene , population , demography , sociology , engineering , aerospace engineering
α-Satellite is a family of tandemly repeated sequences found at all normal human centromeres. In addition to its significance for understanding centromere function, α-satellite is also a model for concerted evolution, as α-satellite repeats are more similar within a species than between species. There are two types of α-satellite in the human genome; while both are made up of ∼171-bp monomers, they can be distinguished by whether monomers are arranged in extremely homogeneous higher-order, multimeric repeat units or exist as more divergent monomeric α-satellite that lacks any multimeric periodicity. In this study, as a model to examine the genomic and evolutionary relationships between these two types, we have focused on the chromosome 17 centromeric region that has reached both higher-order and monomeric α-satellite in the human genome assembly. Monomeric and higher-order α-satellites on chromosome 17 are phylogenetically distinct, consistent with a model in which higher-order evolved independently of monomeric α-satellite. Comparative analysis between human chromosome 17 and the orthologous chimpanzee chromosome indicates that monomeric α-satellite is evolving at approximately the same rate as the adjacent non-α-satellite DNA. However, higher-order α-satellite is less conserved, suggesting different evolutionary rates for the two types of α-satellite.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom