z-logo
open-access-imgOpen Access
Protein structure and evolutionary history determine sequence space topology
Author(s) -
Boris E. Shakhnovich,
Eric J. Deeds,
Charles DeLisi,
Eugene I. Shakhnovich
Publication year - 2005
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.3133605
Subject(s) - biology , pseudogene , genetics , gene , functional divergence , gene family , gene duplication , evolutionary biology , protein family , protein structure prediction , sequence alignment , computational biology , protein structure , peptide sequence , genome , biochemistry
Understanding the observed variability in the number of homologs of a gene is a very important unsolved problem that has broad implications for research into coevolution of structure and function, gene duplication, pseudogene formation, and possibly for emerging diseases. Here, we attempt to define and elucidate some possible causes behind the observed irregularity in sequence space. We present evidence that sequence variability and functional diversity of a gene or fold family is influenced by quantifiable characteristics of the protein structure. These characteristics reflect the structural potential for sequence plasticity, i.e., the ability to accept mutation without losing thermodynamic stability. We identify a structural feature of a protein domain-contact density-that serves as a determinant of entropy in sequence space, i.e., the ability of a protein to accept mutations without destroying the fold (also known as fold designability). We show that (log) of average gene family size exhibits statistical correlation (R(2) > 0.9.) with contact density of its three-dimensional structure. We present evidence that the size of individual gene families are influenced not only by the designability of the structure, but also by evolutionary history, e.g., the amount of time the gene family was in existence. We further show that our observed statistical correlation between gene family size and contact density of the structure is valid on many levels of evolutionary divergence, i.e., not only for closely related sequence, but also for less-related fold and superfamily levels of homology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom