MicroRNA expression detected by oligonucleotide microarrays: System establishment and expression profiling in human tissues
Author(s) -
Omer Barad,
Eti Meiri,
Amir Avniel,
Ranit Aharonov,
Adi Barzilai,
Isaac Bentwich,
Uri Einav,
Shlomit Gilad,
Patrick Hurban,
Yael Karov,
Edward K. Lobenhofer,
Eilon Sharon,
Yoel Moshe Shiboleth,
Marat Shtutman,
Zvi Bentwich,
Paz Einat
Publication year - 2004
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.2845604
Subject(s) - biology , dna microarray , oligonucleotide , microrna , gene expression profiling , microbiology and biotechnology , gene expression , rna , gene , microarray , genetics , computational biology
MicroRNAs (MIRs) are a novel group of conserved short approximately 22 nucleotide-long RNAs with important roles in regulating gene expression. We have established a MIR-specific oligonucleotide microarray system that enables efficient analysis of the expression of the human MIRs identified so far. We show that the 60-mer oligonucleotide probes on the microarrays hybridize with labeled cRNA of MIRs, but not with their precursor hairpin RNAs, derived from amplified, size-fractionated, total RNA of human origin. Signal intensity is related to the location of the MIR sequences within the 60-mer probes, with location at the 5' region giving the highest signals, and at the 3' end, giving the lowest signals. Accordingly, 60-mer probes harboring one MIR copy at the 5' end gave signals of similar intensity to probes containing two or three MIR copies. Mismatch analysis shows that mutations within the MIR sequence significantly reduce or eliminate the signal, suggesting that the observed signals faithfully reflect the abundance of matching MIRs in the labeled cRNA. Expression profiling of 150 MIRs in five human tissues and in HeLa cells revealed a good overall concordance with previously published results, but also with some differences. We present novel data on MIR expression in thymus, testes, and placenta, and have identified MIRs highly enriched in these tissues. Taken together, these results highlight the increased sensitivity of the DNA microarray over other methods for the detection and study of MIRs, and the immense potential in applying such microarrays for the study of MIRs in health and disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom