z-logo
open-access-imgOpen Access
Four-Hundred Million Years of Conserved Synteny of Human Xp and Xq Genes on Three Tetraodon Chromosomes
Author(s) -
Frank Grützner,
Hugues Roest Crollius,
G. Lütjens,
Olivier Jaillon,
Jean Weissenbach,
HansHilger Ropers,
Thomas Haaf
Publication year - 2002
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.222402
Subject(s) - biology , synteny , genetics , gene , human genome , human genetics , computational biology , chromosome , genome
The freshwater pufferfish Tetraodon nigroviridis (TNI) has become highly attractive as a compact reference vertebrate genome for gene finding and validation. We have mapped genes, which are more or less evenly spaced on the human chromosomes 9 and X, on Tetraodon chromosomes using fluorescence in situ hybridization (FISH), to establish syntenic relationships between Tetraodon and other key vertebrate genomes. PufferFISH revealed that the human X is an orthologous mosaic of three Tetraodon chromosomes. More than 350 million years ago, an ancestral vertebrate autosome shared orthologous Xp and Xq genes with Tetraodon chromosomes 1 and 7. The shuffled order of Xp and Xq orthologs on their syntenic Tetraodon chromosomes can be explained by the prevalence of evolutionary inversions. The Tetraodon 2 orthologous genes are clustered in human Xp11 and represent a recent addition to the eutherian X sex chromosome. The human chromosome 9 and the avian Z sex chromosome show a much lower degree of synteny conservation in the pufferfish than the human X chromosome. We propose that a special selection process during vertebrate evolution has shaped a highly conserved array(s) of X-linked genes long before the X was used as a mammalian sex chromosome and many X chromosomal genes were recruited for reproduction and/or the development of cognitive abilities. [Sequence data reported in this paper have been deposited in GenBank and assigned the following accession no: AJ308098.]

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom