z-logo
open-access-imgOpen Access
Oligonucleotide Arrays for High-Throughput SNPs Detection in the MHC Class I Genes: HLA-B as a Model System
Author(s) -
Zhen Guo,
Mark S. Gatterman,
Lee Hood,
John A. Hansen,
Effie W. Petersdorf
Publication year - 2002
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.206402
Subject(s) - biology , oligonucleotide , single nucleotide polymorphism , oligomer restriction , genetics , human leukocyte antigen , major histocompatibility complex , molecular inversion probe , genomic dna , hybridization probe , gene , microbiology and biotechnology , computational biology , genotype , antigen
A simple and efficient oligonucleotide array was developed to identify single nucleotide polymorphisms (SNPs) encoded within the highly polymorphic human major histocompatibility complex (MHC) using HLA-B as a model system. A total of 137 probes were designed to represent all known polymorphisms encoded in exons 2 and 3. PCR products were amplified from human genomic DNA and allowed to hybridize with the oligonucleotide array. Hybridization was detected by fluorescence scanning, and HLA-B alleles were assigned by quantitative analysis of the hybridization results. Variables known to influence the specificity of hybridization, such as oligonucleotide probe size, spacer length, surface density, hybridization conditions, and array uniformity and stability were studied. The efficiency and specificity of identifying HLA-B SNPs using the oligonucleotide arrays was evaluated by blinded analysis of 100 samples from unrelated individuals representing all HLA-B phenotypes. The oligonucleotide array method described in this paper provides unambiguous detection of complex heterozygous SNP combinations. This methodological approach may be applied to other highly polymorphic gene systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom