z-logo
open-access-imgOpen Access
Identification of Rat Genes by TWINSCAN Gene Prediction, RT–PCR, and Direct Sequencing
Author(s) -
Jia Qian Wu,
David Shteynberg,
Manimozhiyan Arumugam,
Richard A. Gibbs,
Michael R. Brent
Publication year - 2004
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.1959604
Subject(s) - biology , gene , genetics , genome , intron , gene prediction , human genome , computational biology , exon , genome project , homology (biology) , polymerase chain reaction
The publication of a draft sequence of a third mammalian genome--that of the rat--suggests a need to rethink genome annotation. New mammalian sequences will not receive the kind of labor-intensive annotation efforts that are currently being devoted to human. In this paper, we demonstrate an alternative approach: reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on dual-genome de novo predictions from TWINSCAN. We tested 444 TWINSCAN-predicted rat genes that showed significant homology to known human genes implicated in disease but that were partially or completely missed by methods based on protein-to-genome mapping. Using primers in exons flanking a single predicted intron, we were able to verify the existence of 59% of these predicted genes. We then attempted to amplify the complete predicted open reading frames of 136 genes that were verified in the single-intron experiment. Spliced sequences were amplified in 46 cases (34%). We conclude that this procedure for elucidating gene structures with native cDNA sequences is cost-effective and will become even more so as it is further optimized.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom