z-logo
open-access-imgOpen Access
Genome Sequence of an M3 Strain of Streptococcus pyogenes Reveals a Large-Scale Genomic Rearrangement in Invasive Strains and New Insights into Phage Evolution
Author(s) -
Ichirô Nakagawa,
Ken Kurokawa,
Atsushi Yamashita,
Masanobu Nakata,
Yusuke Tomiyasu,
Nobuo Okahashi,
Shigetada Kawabata,
Kiyoshi Yamazaki,
Tadayoshi Shiba,
Teruo Yasunaga,
Hideo Hayashi,
Masahira Hattori,
Shigeyuki Hamada
Publication year - 2003
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.1096703
Subject(s) - prophage , biology , genetics , genome , streptococcus pyogenes , gene rearrangement , chromosomal rearrangement , gene , lysogenic cycle , homologous recombination , whole genome sequencing , chromosome , bacteriophage , escherichia coli , bacteria , staphylococcus aureus , karyotype
Group Astreptococcus (GAS) is a gram-positive bacterial pathogen that causes various suppurative infections and nonsuppurative sequelae. Since the late 1980s, streptococcal toxic-shock like syndrome (STSS) and severe invasive GAS infections have been reported globally. Here we sequenced the genome of serotype M3 strain SSI-1, isolated from an STSS patient in Japan, and compared it with those of other GAS strains. The SSI-1 genome is composed of 1,884,275 bp, and 1.7 Mb of the sequence is highly conserved relative to strain SF370 (serotype M1) and MGAS8232 (serotype M18), and almost completely conserved relative to strain MGAS315 (serotype M3). However, a large genomic rearrangement has been shown to occur across the replication axis between the homologous rrn-comX1 regions and between two prophage-coding regions across the replication axis. Atotal of 1 Mb of chromosomal DNA is inverted across the replication axis. Interestingly, the recombinations between the prophage regions are within the phage genes, and the genes encoding superantigens and mitogenic factors are interchanged between two prophages. This genomic rearrangement occurs in 65% of clinical isolates (64/94) collected after 1990, whereas it is found in only 25% of clinical isolates (7/28) collected before 1985. These observations indicate that streptococcal phages represent important plasticity regions in the GAS chromosome where recombination between homologous phage genes can occur and result not only in new phage derivatives, but also in large chromosomal rearrangements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom