z-logo
open-access-imgOpen Access
MEDME: An experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment
Author(s) -
Mattia Pelizzola,
Yasuo Koga,
Alexander E. Urban,
Michael Krauthammer,
Sherman M. Weissman,
Ruth Halaban,
Annette M. Molinaro
Publication year - 2008
Publication title -
genome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 9.556
H-Index - 297
eISSN - 1549-5469
pISSN - 1088-9051
DOI - 10.1101/gr.080721.108
Subject(s) - methylated dna immunoprecipitation , dna methylation , biology , methylation , bisulfite sequencing , dna microarray , illumina methylation assay , epigenetics , differentially methylated regions , epigenomics , cpg site , computational biology , human genome , dna , genetics , genome , gene , gene expression
DNA methylation is an important component of epigenetic modifications that influences the transcriptional machinery and is aberrant in many human diseases. Several methods have been developed to map DNA methylation for either limited regions or genome-wide. In particular, antibodies specific for methylated CpG have been successfully applied in genome-wide studies. However, despite the relevance of the obtained results, the interpretation of antibody enrichment is not trivial. Of greatest importance, the coupling of antibody-enriched methylated fragments with microarrays generates DNA methylation estimates that are not linearly related to the true methylation level. Here, we present an experimental and analytical methodology, MEDME (modeling experimental data with MeDIP enrichment), to obtain enhanced estimates that better describe the true values of DNA methylation level throughout the genome. We propose an experimental scenario for evaluating the true relationship in a high-throughput setting and a model-based analysis to predict the absolute and relative DNA methylation levels. We successfully applied this model to evaluate DNA methylation status of normal human melanocytes compared to a melanoma cell strain. Despite the low resolution typical of methods based on immunoprecipitation, we show that model-derived estimates of DNA methylation provide relatively high correlation with measured absolute and relative levels, as validated by bisulfite genomic DNA sequencing. Importantly, the model-derived DNA methylation estimates simplify the interpretation of the results both at single-loci and at chromosome-wide levels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom